Written by Δ.Μ.

 

Οι Πυθαγόρειοι θεωρούσαν τα μαθηματικά απαραίτητο βήμα προς την αποκάλυψη των απλών φαινομένων, στην πορεία προς την ανακάλυψη της αξίας των πραγμάτων. Στις συμμετρίες και στα σχήματά της, η μαθηματική ανάλυση παρουσίαζε σημαντικές αλήθειες για την πραγματικότητα.

pythagorasl

Οι αριθμοί είναι, κατά κάποιον τρόπο, υπερβατικοί: το ένα συν ένα θα έκανε δύο, άσχετα από το αν θα υπήρχαμε εμείς ή όχι, ή ακόμη κι αν υπήρχε το Σύμπαν. Γι' αυτό, θεωρείται ότι όταν ο Πυθαγόρας ανακάλυψε το περίφημο θεώρημά του, του φάνηκε προφανές να αναζητήσει έναν βωμό και να θυσιάσει ένα βόδι. Είχε ανοίξει για την ανθρωπότητα ένα παράθυρο προς τον κόσμο των θεών. Είχε διακρίνει κάτι από το νόημα των πραγμάτων.

plato

 

Ο ίδιος ο Πλάτων έκανε πολλά για να διατηρήσει ζωντανή την άποψη του Πυθαγόρα ότι τα μαθηματικά βρίσκονται στη βάση όλων όσα γνωρίζουμε για το Σύμπαν. Σε μία από τις πλέον Πυθαγόρειες στιγμές του, στον διάλογο Τίμαιος, ο Πλάτων βεβαιώνει:

Το όραμα της ημέρας και της νύχτας και των μηνών και του κύκλου των ετών δημιούργησε την τέχνη των αριθμών. Μας έδωσε όχι μόνο την έννοια του χρόνου, αλλά και τα μέσα για να μελετήσουμε τη φύση του Σύμπαντος, από όπου αναδύθηκε κάθε φιλοσοφία σε κάθε πλευρά της.

Στην Πολιτεία του Πλάτωνος, τα μαθηματικά περιγράφονται ως η δύναμη που ζωογονεί ένα όργανο της ψυχής που αξίζει χίλια «κανονικά μάτια», επειδή αποτελεί έναν βαθύτερο τρόπο για να βλέπουμε την αλήθεια. Αποσαφηνίζει τα πράγματα. Ο αρχαίος μαθηματικός μπορεί να θεωρηθεί,αρχιτέκτων των αριθμών: χρησιμοποιώντας τα μαθηματικά! εργαλεία - ένα ορθογώνιο τρίγωνο κι έναν χάρακα - δημιούργησε κάτι πραγματικά όμορφο.

Αυτά τα επιχειρήματα παρείχαν ευφάνταστη και μακροχρόνια ώθηση στην επιστήμη. Ο αστρονόμος Γιοχάνες Κέπλερ αναφέρει τον Πυθαγόρα ως «παππού όλων των οπαδών του Κοπέρνικου». Ο Γαλιλαίος πίστευε ότι το Σύμπαν «είναι γραμμένο στη γλώσσα των μαθηματικών». Ο Μπέρτραντ Ράσελ έλεγε ότι «Τα μαθηματικά, αν ειδωθούν σωστά, διαθέτουν όχι μόνο την αλήθεια, αλλά και ύψιστη ομορφιά -? μία ομορφιά ψυχρή και αυστηρή, όπως αυτή της γλυπτικής».

Σήμερα, είμαστε όλοι οπαδοί του Κοπέρνικου. Όμως, είμαστε όλοι και Πυθαγόρειοι; Πιστεύουμε ακόμη ότι μπορούμε να βρούμε νόημα στα μαθηματικά - ακόμη και όσοι από εμάς συνειδητοποιήσαμε στο σχολείο ότι δεν είχαμε κλίση προς αυτά - και, κατ' αναλογίαν, να επεκταθεί σε άλλες πλευρές της ζωής;

Οι περισσότεροι σύγχρονοι μαθηματικοί, για παράδειγμα, όταν αποδεικνύουν ένα θεώρημα, πηγαίνουν στο μπαρ για να πιουν μία μπύρα, όχι στον ναό για να θυσιάσουν ένα βόδι. Κι όμως, το πυθαγόρειο όραμα για τα μαθηματικά δεν πέθανε ποτέ. Αν οι πωλήσεις των βιβλίων που απλοποιούν τα μαθηματικά έχουν κάποια σημασία, τότε η ομορφιά των μαθηματικών είναι ακόμη γοητευτική.

Ένας από τους συγγραφείς αυτών των βιβλίων, ο Βρετανός Marcus du Sautoy (1965), καθηγητής δημόσιας κατανόησης της επιστήμης στο Πανεπιστήμιο της Οξφόρδης, αναφέρει: «Λαμβάνω τα πνευματικά μου σήματα από την αιωνιότητα αυτού του μαθηματικού κόσμου».

Τί εννοεί;

Eugene Wigner

Πρόκειται για ένα ερώτημα που οι περισσότεροι φυσικοί πρέπει να ψιθυρίζουν μεταξύ τους περιστασιακά. Τέθηκε από τον βραβευμένο με Νόμπελ φυσικό Eugene Wigner (1902-1995) το 1963, όταν έγραψε την πραγματεία με τον τίτλο «Η Παράλογη Αποτελεσματικότητα των Μαθηματικών στις Φυσικές Επιστήμες».

Αναρωτιόταν γιατί τα μαθηματικά έχουν αποτέλεσμα, όταν πρέπει να περιγράψουν τι συμβαίνει στον κόσμο. Αν το σκεφθείτε, είναι πράγματι εκπληκτικό το ότι τα πράσινα φύλλα ενός δένδρου αναπτύσσονται με κλασματικά σχήματα ή ότι η δύναμη της βαρύτητας, η οποία διατηρεί τους πλανήτες στη θέση τους, βρίσκεται σε σχέση αυστηρής αναλογίας με την απόσταση. Προσθέστε σ? αυτό και την κοινή αίσθηση των περισσοτέρων μαθηματικών ότι τα μαθηματικά δεν δημιουργούνται, ανακαλύπτονται.

Τα μαθηματικά μοιάζουν με την εξερεύνηση μιας άγνωστης χώρας, μιας χώρας που απλώνεται μπροστά σας για να τη χαρτογραφήσετε και να τη διασχίσετε. Ο Wigner γράφει: «Είναι? θαύμα το ότι παρά την απίστευτη περιπλοκότητα του κόσμου, μπορούν να ανακαλυφθούν συγκεκριμένες κανονικότητες στα γεγονότα». Στην πραγματεία του, αναρωτιέται τι μπορεί να σημαίνει αυτή η «παράλογη αποτελεσματικότητα».

Το συμπέρασμα είναι ότι χωρίς να κατανοούμε γιατί και πώς λειτουργούν τα μαθηματικά, οι Νεοπυθαγόρειοι μπορεί να δικαιολογούνται που συμπεραίνουν ότι οι ιδιότητες όπως η τάξη και η ομορφιά " οι ιδιότητες που σχετίζονται με τα μαθηματικά " είναι καταγεγραμμένες στη δομή του Σύμπαντος. Επιπλέον, εφ' όσον τα μαθηματικά τα ανακαλύπτουμε και δεν τα δημιουργούμε, τότε, ίσως, η ενασχόληση με τα μαθηματικά να αποτελεί την ανακάλυψη και αυτών των πραγμάτων.

Αυτά τα ζητήματα οδήγησαν ορισμένους πιστούς να ανατρέξουν στα μαθηματικά ως απόδειξη για την ύπαρξη του Θεού - ή για να το πούμε με πιο σαφή τρόπο, να υποστηρίξουν ότι η δύναμη των μαθηματικών είναι ακριβώς αυτό που θα περίμενες να βρεις σ' έναν κόσμο δημιουργημένο από μία εύτακτη και όμορφη θεότητα.